Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(5): 605-615, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36862128

RESUMO

Boron, as borate (or boric acid), is known as a mediator of the synthesis of ribose, ribonucleosides, and ribonucleotides (precursors of RNA) under plausible prebiotic conditions. With regard to these phenomena, the potential participation of this chemical element (as a constituent of minerals or hydrogels) for the emergence of prebiological homochirality is considered. This hypothesis is based on characteristics of crystalline surfaces as well as solubility of some minerals of boron in water or specific features of hydrogels with ester bonds from reaction of ribonucleosides and borate.


Assuntos
Boro , Ribonucleosídeos , Humanos , Boro/química , Boratos/química , Minerais/química , Ribonucleosídeos/química , Hidrogéis
2.
J Theor Biol ; 370: 197-201, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25571850

RESUMO

Some amino acids and their formal derivatives, currently riboswitch-binding species, could have interacted with polyribonucletides in prebiotic environments, leading to the peptide formation. If the resulting compounds had led to a sustainable polymerization of amino acids and the new structures had catalytic activity, such would have been an important contribution to the transition from the RNA world to the RNA/Protein world.


Assuntos
Proteínas/metabolismo , RNA/metabolismo , Riboswitch , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Ligantes , Peptídeos/metabolismo
3.
J Colloid Interface Sci ; 431: 250-4, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24674693

RESUMO

Scientific explanations for the origin of life are incomplete and may differ on some issues. Here, we argue that some prebiological steps have occurred in environments with borophosphates and/or silicophosphates in the form of hydrogels, on the basis of their chemical groups and structural properties. These could have decreased the diffusion rate of some prebiotic molecules, stabilized molecules with vicinal cis-diol groups, reduced the hydrolytic activity of water and inserted catalytic metal ions into their networks. Additionally, these hydrogels could have acted as reaction media, supplied a phosphate source for phosphorylations and produced crystals that may have permitted enantiomeric enrichment of prebiotic molecules, thus providing conditions for the emergence of protocells.


Assuntos
Compostos de Boro/química , Hidrogéis/química , Origem da Vida , Fosfatos/química , Compostos de Silício/química
4.
Chemistry ; 14(6): 1828-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18058882

RESUMO

Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed.


Assuntos
Acetatos/química , Alanina/análogos & derivados , Etano/química , Ácidos Hidroxâmicos/química , Propionatos/química , Vanádio/química , Alanina/química , Catálise , Estrutura Molecular
5.
J Am Chem Soc ; 129(34): 10531-45, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17676842

RESUMO

Vanadium(IV or V) complexes with N,O- or O,O-ligands, i.e., [VO{N(CH2CH2O)3}], Ca[V(HIDPA)2] (synthetic amavadine), Ca[V(HIDA)2], or [Bu4N]2[V(HIDA)2] [HIDPA, HIDA = basic form of 2,2'-(hydroxyimino)dipropionic or -diacetic acid, respectively], [VO(CF3SO3)2], Ba[VO(nta)(H2O)]2 (nta = nitrilotriacetate), [VO(ada)(H2O)] (ada = N-2-acetamidoiminodiacetate), [VO(Hheida)(H2O)] (Hheida = 2-hydroxyethyliminodiacetate), [VO(bicine)] [bicine = basic form of N,N-bis(2-hydroxyethyl)glycine], and [VO(dipic)(OCH2CH3)] (dipic = pyridine-2,6-dicarboxylate), are catalyst precursors for the efficient single-pot conversion of methane into acetic acid, in trifluoroacetic acid (TFA) under moderate conditions, using peroxodisulfate as oxidant. Effects on the yields and TONs of various factors are reported. TFA acts as a carbonylating agent and CO is an inhibitor for some systems, although for others there is an optimum CO pressure. The most effective catalysts (as amavadine) bear triethanolaminate or (hydroxyimino)dicarboxylates and lead, in a single batch, to CH3COOH yields > 50% (based on CH4) or remarkably high TONs up to 5.6 x 103. The catalyst can remain active upon multiple recycling of its solution. Carboxylation proceeds via free radical mechanisms (CH3* can be trapped by CBrCl3), and theoretical calculations disclose a particularly favorable process involving the sequential formation of CH3*, CH3CO*, and CH3COO* which, upon H-abstraction (from TFA or CH4), yields acetic acid. The CH3COO* radical is formed by oxygenation of CH3CO* by a peroxo-V complex via a V{eta1-OOC(O)CH3} intermediate. Less favorable processes involve the oxidation of CH3CO* by the protonated (hydroperoxo) form of that peroxo-V complex or by peroxodisulfate. The calculations also indicate that (i) peroxodisulfate behaves as a source of sulfate radicals which are methane H-abstractors, as a peroxidative and oxidizing agent for vanadium, and as an oxidizing and coupling agent for CH3CO* and that (ii) TFA is involved in the formation of CH3COOH (by carbonylating CH3*, acting as an H-source to CH3COO*, and enhancing on protonation the oxidizing power of a peroxo-VV complex) and of CF3COOCH3 (minor product in the absence of CO).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...